Abstract
Abstract
Background
Low-density lipoprotein cholesterol (LDL-C) is associated with atherosclerotic cardiovascular disease (ASCVD). Friedewald, Sampson, and Martin-Hopkins equations are used to calculate LDL-C. This study compares the impact of switching between these equations in a large geographically defined population.
Materials and methods
Data for individuals who had a lipid panel ordered clinically between 2010 and 2019 were included. Comparisons were made across groups using the two-sample t-test or chi-square test as appropriate. Discordances between LDL measures based on clinically actionable thresholds were summarized using contingency tables.
Results
The cohort included 198,166 patients (mean age 54 years, 54% female). The equations perform similarly at the lower range of triglycerides but began to diverge at a triglyceride level of 125 mg/dL. However, at triglycerides of 175 mg/dL and higher, the Martin-Hopkins equation estimated higher LDL-C values than the Samson equation. This discordance was further exasperated at triglyceride values of 400 to 800 mg/dL. When comparing the Sampson and Friedewald equations, at triglycerides are below 175 mg/dL, 9% of patients were discordant at the 70 mg/dL cutpoint, whereas 42.4% were discordant when triglycerides are between 175 and 400 mg/dL. Discordance was observed at the clinically actionable LDL-C cutpoint of 190 mg/dL with the Friedewald equation estimating lower LDL-C than the other equations. In a high-risk subgroup (ASCVD risk score > 20%), 16.3% of patients were discordant at the clinical cutpoint of LDL-C < 70 mg/dL between the Sampson and Friedewald equations.
Conclusions
Discordance at clinically significant LDL-C cutpoints in both the general population and high-risk subgroups were observed across the three equations. These results show that using different methods of LDL-C calculation or switching between different methods could have clinical implications for many patients.
Funder
National Institute on Aging, National Institutes of Health
National Heart, Lung, and Blood Institute, National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart Disease and Stroke statistics: a report of US and Global Data from the American Heart Association. Circulation. 2024;149(8):e347–913.
2. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082–e143.
3. Wolska A, Remaley AT. Measuring LDL-cholesterol: what is the best way to do it? Curr Opin Cardiol. 2020;35(4):405–11.
4. Islam SMT, Osa-Andrews B, Jones PM, Muthukumar AR, Hashim I, Cao J. Methods of low-density lipoprotein-cholesterol measurement: analytical and clinical applications. EJIFCC. 2022;33(4):282–94.
5. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.