Abstract
Abstract
Background
Differential effects of individual saturated fatty acids (SFAs), particularly stearic acid (C18:0), relative to the shorter-chain SFAs have drawn interest for more accurate nutritional guidelines. However, specific biologic and pathologic functions that can be assigned to particular SFAs are very limited. The present study was designed to compare changes in metabolic and transcriptomic profiles in mice caused by a high C18:0 diet and high palmitic acid (C16:0) diet.
Methods
Male C57BL/6 mice were assigned to a normal fat diet (NFD), a high fat diet with high C18:0/C16:0 ratio (HSF) or an isocaloric high fat diet with a low C18:0/C16:0 ratio (LSF) for 10 weeks. An oral glucose tolerance test, 72-h energy expenditure measurement and CT scan of body fat were done before sacrifice. Fasting glucose and lipids were determined by an autobiochemical analyzer. Blood insulin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were measured by enzyme-linked immunosorbent assay methods. Free fatty acids (FFAs) profiles in blood and liver were determined by using gas chromatography-mass spectrometry. Microarray analysis was applied to investigate changes in transcriptomic profiles in the liver. Pathway analysis and gene ontology analysis were applied to describe the roles of differentially expressed mRNAs.
Results
Compared with the NFD group, body weight, body fat ratio, fasting blood glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), triglyceride, IL-6, serum and liver FFAs including total FFAs, C16:0 and C18:0 were increased in both high fat diet groups and were much higher in the HSF group than those in the LSF group. Both HSF and LSF mice exhibited distinguishable long non-coding RNA (lncRNA), microRNA and mRNA expression profiles when compared with those of NFD mice. Additionally, more differentially expressed lncRNAs and mRNAs were observed in the HSF group than in the LSF group. Some biological functions and pathways, other than energy metabolism regulation, were identified as differentially expressed mRNAs between the HSF group and the LSF group.
Conclusion
The high fat diet with a high C18:0/C16:0 ratio induced more severe glucose and lipid metabolic disorders and inflammation and affected expression of more lncRNAs and mRNAs than an isocaloric low C18:0/C16:0 ratio diet in mice. These results provide new insights into the differences in biological functions and related mechanisms, other than glucose and lipid metabolism, between C16:0 and C18:0.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference44 articles.
1. Gilani A, Pandey V, Garcia V, Agostinucci K, Singh SP, Schragenheim J, et al. High-fat diet-induced obesity and insulin resistance in CYP4a14(−/−) mice is mediated by 20-HETE. Am J Physiol Regul Integr Comp Physiol. 2018;315:R934–44.
2. Pati S, Krishna S, Lee JH, Ross MK, de La Serre CB, Harn DA Jr, et al. Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids. 1863;2018:26–39.
3. Li B, Leung JCK, Chan LYY, Yiu WH, Tang SCW. A global perspective on the crosstalk between saturated fatty acids and toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res. 2019;77:101020.
4. Yazici D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.
5. Melanson EL, Astrup A, Donahoo WT. The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann Nutr Metab. 2009;55:229–43.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献