Abstract
Abstract
Background
Inhalation of common air pollutants such as diesel and biodiesel combustion products can induce vascular changes in humans which may contribute to increased mortality and morbidity associated with fine particulate matter exposures. Diesel, biodiesel, and other combustion byproducts contain fatty acid components capable of entering the body through particulate matter inhalation. Fatty acids can also be endogenously released into circulation following a systemic stress response to some inhaled pollutants such as ozone. When in the circulation, bioactive fatty acids may interact with cells lining the blood vessels, potentially inducing endothelial dysfunction. To examine whether fatty acids could potentially be involved in human vascular responses to air pollutants, we determined the effects of fatty acids and derivatives on important vascular cell functions.
Methods
Human umbilical vein endothelial cells (HUVEC) were exposed in vitro to oleic acid (OA) or OA metabolites for 4-48 h. Cytotoxicity, vasodilator production (by ELISA measurement), mitochondrial function (using Sea Horse assays), and iron metabolism (inferred by ICP-OES measurements) were examined, with standard statistical testing (ANOVA, t-tests) employed.
Results
Dose-dependent cytotoxicity was noted at 24 h, with 12-hydroxy OA more potent than OA. Mitochondrial stress testing showed that 12-hydroxy OA and OA induce mitochondrial dysfunction. Analysis of soluble mediator release from HUVEC showed a dose-dependent increase in prostaglandin F2α, a lipid involved in control of vascular tone, at 24 h (85% above controls) after OA-BSA exposure. RT-PCR analysis revealed OA did not induce changes in gene expression at noncytotoxic concentrations in exposed HUVEC, but 12-OH OA did alter ICAM and COX2 gene expression.
Conclusions
Together, these data demonstrate that FA may be capable of inducing cytotoxic effects and altering expression of mediators of vascular function following inhalation exposure, and may be implicated in air pollutant-induced deaths and hospitalizations. (267 of max 350 words).
Funder
U.S. Environmental Protection Agency
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference50 articles.
1. Dockery DW. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect. 2001;109(Suppl 4):483–6.
2. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–42.
3. Tornqvist H, Mills NL, Gonzalez M, Miller MR, Robinson SD, Megson IL, Macnee W, Donaldson K, Soderberg S, Newby DE, et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med. 2007;176:395–400.
4. Bosson JA, Unosson J, Blomberg A, Sandström T, Pourazar J, Newby DE, Mills NL, Langrish JP. RME30 biodiesel exhaust inhalation causes vascular dysfunction. Eur Respir J. 2012;40:P4785.
5. Soberanes S, Urich D, Baker CM, Burgess Z, Chiarella SE, Bell EL, Ghio AJ, De Vizcaya-Ruiz A, Liu J, Ridge KM. Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem. 2009;284:2176–86.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献