Author:
Chen Xuanxin,Xue Wei,Zhang Jia,Peng Jiayi,Huang Wenxiang
Abstract
Abstract
Background
Nonalcoholic steatohepatitis (NASH) is one of the most frequent liver diseases at present, and there is no radical treatment. The consequences of a variety of ginsenoside compounds on this situation have before been reported, however, the specific effect on the monomeric ginsenoside Rg1 (Rg1) and its associated underlying molecular mechanism stay unknown.
Material and methods
In vitro, the cell models were constructed by exposing free fatty acids (FFAs) to HepG2 cells. A methionine and choline deficiency (MCD)-induced NASH mouse model was also established over 5–6 weeks of treatment. Rg1 is a traditional Chinese medicine monomer. These NASH models were treated with Rg1 and analyzed by qRT-PCR, Western Blot, sequencing, Oil red O staining, immunofluorescence, enzyme activity, HE staining, ELISA, double luciferase reporter assay, and immunohistochemistry.
Results
Overexpression of ATG2B, an autophagy-related protein, attenuated lipid droplet accumulation and reduces ALT, AST, inflammatory cytokines, hydrogen peroxide, and pyroptosis in established mouse and cellular models of NASH and increased levels of ATP and autophagy. The binding sites of miR-375-3p and ATG2B were verified by bioinformatic prediction and a dual-luciferase reporter gene. Knockdown of miR-375-3p promoted autophagy and inhibited pyroptosis. ATG2B knockdown substantially attenuated the impact of miR-375-3p on NASH. Rg1 appears to regulate the occurrence and development of NASH inflammation through miR-375-3p and ATG2B in vitro and in vivo, and is regulated by PTEN-AKT pathway.
Conclusions
This study showed that Rg1 participates in autophagy and pyroptosis through the miR-375-3p/ATG2B/PTEN-AKT pathway, thereby alleviating the occurrence and development of NASH, for that reason revealing Rg1 as a candidate drug for NASH.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献