Author:
Stephens Dominique C.,Powell Tyrel W.,Taraska Justin W.,Harris Dinari A.
Abstract
Abstract
Background
The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown.
Methods
Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells.
Results
Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9.
Conclusions
This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Funder
National Science Foundation
National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference98 articles.
1. Mostov KE, Verges M, Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 2000;12:483–90.
2. Winkle CC, McClain LM, Valtschanoff JG, Park CS, Maglione C, Gupton SL. A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching. J Cell Biol. 2014;205:217–32.
3. Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W, Taraska JW. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One. 2015;10:e0117495.
4. Hendrix A, Westbroek W, Bracke M, De Wever O. An ex(o)citing machinery for invasive tumor growth. Cancer Res. 2010;70:9533–7.
5. Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G, Liu L. Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res. 2018;8:1661–73.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献