Upregulation of FNDC5 gene expression in C2C12 cells after single and combined treatments of resveratrol and ATRA

Author:

Abedi-Taleb Elahe,Vahabi Zahra,Sekhavati-Moghadam Ehsan,Khedmat Leila,Jazayeri Shima,Saboor-Yaraghi Ali Akbar

Abstract

Abstract Background Irisin is a newly discovered myokine that secreted from skeletal muscle cells. Several studies showed that irisin involves in thermogenesis and increases the expression of browning markers such as uncoupling protein-1 that in turns induces the conversion of white adipose tissue to brown fat. Resveratrol (Res) and all-trans retinoic acid (ATRA) can also upregulate the expression of thermogenesis genes. In the present study, the effects of single and combined treatments of Res and ATRA on fibronectin type III domain containing 5 (FNDC5) gene expression was explored. Methods The mouse myoblasts, C2C12 cells, were seeded in 6-well plastic plates and cultured in DMEM media. After differentiation, in a pilot study, C2C12 myotubes were treated with different concentrations of Res and ATRA for 12 h. The best result was obtained by treatment of 1and 25 μM of Res and 1 μM of ATRA. Then the main study was continued by single and combined treatment of these compounds at chosen concentration. After treatments, total RNA was extracted from C2C12 cells. Complementary DNA (cDNA) was generated by the cDNA synthesis kit and FNDC5 mRNA expression was evaluated by the real-time PCR method. Results The FNDC5 gene expression in C2C12 myotubes of alone-treated with 1 μM, 25 μM Res and 10 μM ATRA did not change compared to vehicle group. However, in combination-treated the expression of FNDC5 gene was significantly increased compared to vehicle group. Conclusion This is the first evidence that Res and ATRA can regulate FNDC5 gene expression in C2C12 myotubes. More investigations are necessary to explore the therapeutic effects of these nutrients in obesity, diabetes, cardiac and neurovascular disease.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3