ANGPTL3 is involved in kidney injury in high-fat diet-fed mice by suppressing ACTN4 expression

Author:

Li Guanyu,Lu Di,Wang Jingzhi,Yue Shuling,Tan Mei,Liu Ming,Gao Xia

Abstract

Abstract Objective We wanted to explore how angiopoietin-like 3 (ANGPTL3) impact hyperlipidemia-induced renal injury. Methods ANGPTL3 knockout mice and wild-type C57 mice were set up in four groups (N = 5) depending on a normal or 60% high-fat diet: wild-type with normal diet (WT), angptl3-/- with normal diet (KO), wild-type + high-fat diet (WT + HF) and angptl3-/- + high-fat diet (KO + HF). The detection time points were the 9th, 13th, 17th and 21st weeks after modeling. Serum lipid and urinary protein levels of mice in each group were detected, and pathological changes in the kidney were analyzed. Moreover, the expression of ANGPTL3, α-actinin-4 (ACTN4), CD2-associated protein (CD2AP) and podocin was tested in the glomerulus by immunohistochemistry (IHC). Results In the WT + HF group, hyperlipidemia and proteinuria could be observed at the 9th week and were gradually aggravated with time. Compared with WT + HF mice, the levels of serum lipids and proteinuria in KO + HF mice were significantly reduced, and the width of podocyte foot processes (FPs) fusion was also markedly improved. The IHC results suggested that in WT + HF mice, the expression of ANGPTL3 was significantly enhanced. After modeling, ACTN4 expression was markedly weakened in the glomeruli of WT + HF mice. Different to WT mice, ACTN4 expression was not observed obviously change in KO + HF mice. Compared with the normal diet group, the expression of podocin showed a decline in WT mice treated with high-fat diet and showed a significant difference from the 17th week. In addition, podocin expression in KO + HF glomeruli was also found to be weak but not significantly different from that in WT + HF glomeruli at the four time points. The expression of CD2AP showed similar results among the four groups. Conclusion ANGPTL3 could play a role in the mechanism of hyperlipidemia-associated podocyte injury via ACTN4.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Science and Technology Program of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3