Author:
Zhang Chao,Chen Jingyuan,Liu Yuhao,Xu Danyan
Abstract
AbstractSialic acid (Sia), the acylated derivative of the nine-carbon sugar neuraminic acid, is a terminal component of the oligosaccharide chains of many glycoproteins and glycolipids. In light of its important biological and pathological functions, the relationship between Sia and coronary artery disease (CAD) has been drawing great attentions recently. Large-scale epidemiological surveys have uncovered a positive correlation between plasma total Sia and CAD risk. Further research demonstrated that N-Acetyl-Neuraminic Acid, acting as a signaling molecule, triggered myocardial injury via activation of Rho/ROCK-JNK/ERK signaling pathway both in vitro and in vivo. Moreover, there were some evidences showing that the aberrant sialylation of low-density lipoprotein, low-density lipoprotein receptor and blood cells was involved in the pathological process of atherosclerosis. Significantly, the Sia regulates immune response by binding to sialic acid-binding immunoglobulin-like lectin (Siglecs). The Sia-Siglecs axis is involved in the immune inflammation of atherosclerosis. The generation of Sia and sialylation of glycoconjugate both depend on many enzymes, such as sialidase, sialyltransferase and trans-sialidase. Abnormal activation or level of these enzymes associated with atherosclerosis, and inhibitors of them might be new CAD treatments. In this review, we focus on summarizing current understanding of Sia metabolism and of its relevance to atherosclerosis.
Funder
the National Nature Scientific Funding of China
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference91 articles.
1. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.
2. Rohrig CH, Choi SS, Baldwin N. The nutritional role of free sialic acid, a humans milk monosaccharide, and its application as a functional food ingredient. Crit Rev Food Sci Nutr. 2017;57:1017–38.
3. Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol. 2009;19:507–14.
4. Bull C, Stoel MA, den Brok MH, Adema GJ. Sialic acids sweeten a tumor's life. Cancer Res. 2014;74:3199–204.
5. Cohen M, Varki A. The sialome--far more than the sum of its parts. Omics. 2010;14:455–64.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献