Discovery of a novel lipid metabolism-related gene signature to predict outcomes and the tumor immune microenvironment in gastric cancer by integrated analysis of single-cell and bulk RNA sequencing

Author:

Zhang Jinze,Wang He,Tian Yu,Li Tianfeng,Zhang Wei,Ma Li,Chen Xiangjuan,Wei Yushan

Abstract

AbstractGastric cancer (GC) is a pressing global clinical issue, with few treatment options and a poor prognosis. The onset and spread of stomach cancer are significantly influenced by changes in lipid metabolism-related pathways. This study aimed to discover a predictive signature for GC using lipid metabolism-related genes (LMRGs) and examine its correlation with the tumor immune microenvironment (TIME). Transcriptome data and clinical information from patients with GC were collected from the TCGA and GEO databases. Data from GC samples were analyzed using both bulk RNA-seq and single-cell sequencing of RNA (scRNA-seq). To identify survival-related differentially expressed LMRGs (DE-LMRGs), differential expression and prognosis studies were carried out. We built a predictive signature using LASSO regression and tested it on the TCGA and GSE84437 datasets. In addition, the correlation of the prognostic signature with the TIME was comprehensively analyzed. In this study, we identified 258 DE-LMRGs in GC and further screened seven survival-related DE-LMRGs. The results of scRNA-seq identified 688 differentially expressed genes (DEGs) between the three branches. Two critical genes (GPX3 and NNMT) were identified using the above two gene groups. In addition, a predictive risk score that relies on GPX3 and NNMT was developed. Survival studies in both the TCGA and GEO datasets revealed that patients categorized to be at low danger had a significantly greater prognosis than those identified to be at high danger. Additionally, by employing calibration plots based on TCGA data, the study demonstrated the substantial predictive capacity of a prognostic nomogram, which incorporated a risk score along with various clinical factors. Within the high-risk group, there was a noticeable abundance of active natural killer (NK) cells, quiescent monocytes, macrophages, mast cells, and activated CD4 + T cells. In summary, a two-gene signature and a predictive nomogram have been developed, offering accurate prognostic predictions for general survival in GC patients. These findings have the potential to assist healthcare professionals in making informed medical decisions and providing personalized treatment approaches.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Commission

Science Research Foundation of Education Department of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3