Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet

Author:

Pan Yongming,Yu Chen,Huang Junjie,Rong Yili,Chen Jiaojiao,Chen Minli

Abstract

Abstract Background Atherosclerosis is a major contributor to cardiovascular events, however, its molecular mechanism remains poorly known. Animal models of atherosclerosis can be a valuable tool to provide insights into the etiology, pathophysiology, and complications of atherosclerosis. In particular, Tibetan minipigs are a feasible model for studying diet-related metabolic and atherosclerotic diseases. Methods We used vascular transcriptomics to identify differentially expressed genes (DEGs) in high fat/cholesterol (HFC) diet-fed Tibetan minipig atherosclerosis models, analyzed the DEGs gene ontology (GO) terms, pathways and protein-protein interactions (PPI) networks, and identified hub genes and key modules using molecular complex detection (MCODE), Centiscape and CytoHubba plugin. The identified genes were validated using the human carotid atherosclerosis database (GSEA 43292) and RT-PCR methods. Results Our results showed that minipigs displayed obvious dyslipidemia, oxidative stress, inflammatory response, atherosclerotic plaques, as well as increased low-density lipoprotein (LDL) and leukocyte recruitment after 24 weeks of HFC diet feeding compared to those under a regular diet. Our RNA-seq results revealed 1716 DEGs in the atherosclerotic/NC group, of which 1468 genes were up-regulated and 248 genes were down-regulated. Functional enrichment analysis of DEGs showed that the HFC diet-induced changes are related to vascular immune-inflammatory responses, lipid metabolism and muscle contraction, indicating that hypercholesterolemia caused by HFC diet can activate innate and adaptive immune responses to drive atherosclerosis development. Furthermore, we identified four modules from the major PPI network, which are implicated in cell chemotaxis, myeloid leukocyte activation, cytokine production, and lymphocyte activation. Fifteen hub genes were discovered, including TNF, PTPRC, ITGB2, ITGAM, VCAM1, CXCR4, TYROBP, TLR4, LCP2, C5AR1, CD86, MMP9, PTPN6, C3, and CXCL10, as well as two transcription factors (TF), i.e. NF-ĸB1 and SPI1. These results are consistent with the expression patterns in human carotid plaque and were validated by RT-PCR. Conclusions The identified DEGs and their enriched pathways provide references for the development and progression mechanism of Tibetan minipig atherosclerosis model induced by the HFC diet.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3