NMR derived changes of lipoprotein particle concentrations related to impaired fasting glucose, impaired glucose tolerance, or manifest type 2 diabetes mellitus

Author:

Kalbitzer Tina,Lobenhofer Kristina,Martin Silke,Beck Erlach Markus,Kremer Werner,Kalbitzer Hans Robert

Abstract

Abstract Background Type 2 diabetes mellitus (T2D) and corresponding borderline states, impaired fasting glucose (IFG) and/or glucose tolerance (IGT), are associated with dyslipoproteinemia. It is important to distinguish between factors that cause T2D and that are the direct result of T2D. Methods The lipoprotein subclass patterns of blood donors with IFG, IGT, with IFG combined with IGT, and T2D are analyzed by nuclear magnetic resonance (NMR) spectroscopy. The development of lipoprotein patterns with time is investigated by using samples retained for an average period of 6 years. In total 595 blood donors are classified by oral glucose tolerance test (oGTT) and their glycosylated hemoglobin (HbA1c) concentrations. Concentrations of lipoprotein particles of 15 different subclasses are analyzed in the 10,921 NMR spectra recorded under fasting and non-fasting conditions. The subjects are assumed healthy according to the strict regulations for blood donors before performing the oGTT. Results Under fasting conditions manifest T2D exhibits a significant concentration increase of the smallest HDL particles (HDL A) combined with a decrease in all other HDL subclasses. In contrast to other studies reviewed in this paper, a general concentration decrease of all LDL particles is observed that is most prominent for the smallest LDL particles (LDL A). Under normal nutritional conditions a large, significant increase of the concentrations of VLDL and chylomicrons is observed for all groups with IFG and/or IGT and most prominently for manifest T2D. As we show it is possible to obtain an estimate of the concentrations of the apolipoproteins Apo-A1, Apo-B100, and Apo-B48 from the NMR data. In the actual study cohort, under fasting conditions the concentrations of the lipoproteins are not increased significantly in T2D, under non-fasting conditions only Apo-B48 increases significantly. Conclusion In contrast to other studies, in our cohort of “healthy” blood donors the T2D associated dyslipoproteinemia does not change the total concentrations of the lipoprotein particles produced in the liver under fasting and non-fasting conditions significantly but only their subclass distributions. Compared to the control group, under non-fasting conditions participants with IGT and IFG or T2D show a substantial increase of plasma concentrations of those lipoproteins that are produced in the intestinal tract. The intestinal insulin resistance becomes strongly observable.

Funder

Bayerische Forschungsstiftung

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Reference44 articles.

1. Otvos JD, Jeyarajah EJ, Bennett DW. Quantification of plasma lipoproteins by protein nuclear magnetic resonance spectroscopy. Clin Chem. 1991;37:377–86.

2. Otvos JD. Method and apparatus for measuring classes and subclasses of lipoproteins," Patent US 5343389 A. 1994.

3. Ala-Korpela M, Korhonen A, Keisala J, Horkko S, Korpi P, Ingman LP, Jokisaari J, Savolainen MJ, Kesäniemi YA. 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res. 1994;35:2292–304.

4. Huber F, Kalbitzer H R, Kremer W. Verfahren zur Bestimmung von Lipoproteinen in Körperflüssigkeiten und Messanordnung dafür. DE 10 2004 026 903 B4 2006.05.18.

5. Kremer W, Kalbitzer HR, Huber F. Process for the determination of lipoproteins in body fluids. US 7,927,878 B2. 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3