A lipid metabolism–based prognostic risk model for HBV–related hepatocellular carcinoma

Author:

Zhou Lili,Xia Shaohuai,Liu Yaoyao,Ji Qiang,Li Lifeng,Gao Xuan,Guo Xiaodi,Yi Xin,Chen FengORCID

Abstract

Abstract Background Up to 85% of hepatocellular carcinoma (HCC) cases in China can be attributed to infection of hepatitis B virus (HBV). Lipid metabolism performs important function in hepatocarcinogenesis of HBV–related liver carcinoma. However, limited studies have explored the prognostic role of lipid metabolism in HBV–related HCC. This study established a prognostic model to stratify HBV–related HCC based on lipid metabolisms. Methods Based on The Cancer Genome Atlas HBV–related HCC samples, this study selected prognosis-related lipid metabolism genes and established a prognosis risk model by performing uni- and multi-variate Cox regression methods. The final markers used to establish the model were selected through the least absolute shrinkage and selection operator method. Analysis of functional enrichment, immune landscape, and genomic alteration was utilized to investigate the inner molecular mechanism involved in prognosis. Results The risk model independently stratified HBV-infected patients with liver cancer into two risk groups. The low–risk groups harbored longer survival times (with P < 0.05, log–rank test). TP53, LRP1B, TTN, and DNAH8 mutations and high genomic instability occurred in high–risk groups. Low–risk groups harbored higher CD8 T cell infiltration and BTLA expression. Lipid–metabolism (including “Fatty acid metabolism”) and immune pathways were significantly enriched (P < 0.05) in the low–risk groups. Conclusions This study established a robust model to stratify HBV–related HCC effectively. Analysis results decode in part the heterogeneity of HBV–related liver cancer and highlight perturbation of lipid metabolism in HBV–related HCC. This study’s findings could facilitate patients’ clinical classification and give hints for treatment selection.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3