Risk stratification of ST-segment elevation myocardial infarction (STEMI) patients using machine learning based on lipid profiles

Author:

Xue Yuzhou,Shen Jian,Hong Weifeng,Zhou Wei,Xiang Zhenxian,Zhu Yuansong,Huang Chuiguo,Luo Suxin

Abstract

Abstract Background Numerous studies have revealed the relationship between lipid expression and increased cardiovascular risk in ST-segment elevation myocardial infarction (STEMI) patients. Nevertheless, few investigations have focused on the risk stratification of STEMI patients using machine learning algorithms. Methods A total of 1355 STEMI patients who underwent percutaneous coronary intervention were enrolled in this study during 2015–2018. Unsupervised machine learning (consensus clustering) was applied to the present cohort to classify patients into different lipid expression phenogroups, without the guidance of clinical outcomes. Kaplan-Meier curves were implemented to show prognosis during a 904-day median follow-up (interquartile range: 587–1316). In the adjusted Cox model, the association of cluster membership with all adverse events including all-cause mortality, all-cause rehospitalization, and cardiac rehospitalization was evaluated. Results All patients were classified into three phenogroups, 1, 2, and 3. Patients in phenogroup 1 with the highest Lp(a) and the lowest HDL-C and apoA1 were recognized as the statin-modified cardiovascular risk group. Patients in phenogroup 2 had the highest HDL-C and apoA1 and the lowest TG, TC, LDL-C and apoB. Conversely, patients in phenogroup 3 had the highest TG, TC, LDL-C and apoB and the lowest Lp(a). Additionally, phenogroup 1 had the worst prognosis. Furthermore, a multivariate Cox analysis revealed that patients in phenogroup 1 were at significantly higher risk for all adverse outcomes. Conclusion Machine learning-based cluster analysis indicated that STEMI patients with increased concentrations of Lp(a) and decreased concentrations of HDL-C and apoA1 are likely to have adverse clinical outcomes due to statin-modified cardiovascular risks. Trial registration ChiCTR1900028516 (http://www.chictr.org.cn/index.aspx).

Funder

Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3