Author:
Hang Fei,Chen Jieruo,Wang Zefeng,Zheng Keyang,Wu Yongquan
Abstract
Abstract
Background
Literature on the association between the atherogenic index of plasma (AIP) and the risk of major adverse cardiovascular events (MACEs) among non-diabetic hypertensive older adults is quite limited.
Methods
A post-hoc analysis of data obtained from the Systolic Blood Pressure Intervention Trial was performed. The predictive value of AIP on the risk of MACEs among non-diabetic hypertensive older adults was assessed to evaluate whether the benefit of intensive blood pressure (BP) control in preventing MACEs is consistent in different AIP subgroups.
Results
In this study, 9323 participants with AIP were included, out of which 561 (6.02%) had composite cardiovascular outcomes during a median of 3.22 years of follow-up. Patients in the highest AIP quartile had a significantly increased risk of the primary outcome. In the fully adjusted Model 3, the adjusted hazard ratios (HRs) of the primary outcome for participants in Q2, Q3, and Q4 of AIP were 1.32 (1.02, 1.72), 1.38 (1.05, 1.81), and 1.56 (1.17, 2.08) respectively. Consistently, the trend test for the association between AIP quartiles and the primary outcome showed that a higher AIP quartile was associated with a significantly higher risk of the primary outcome (adjusted HR (95%CI) in model 3:1.14 (1.04, 1.25), P = 0,004). However, within each AIP quartile, absolute event rates were lower in the intensive treatment group. No evidence was found for the interaction between intensive BP control and AIP for the risk of the primary outcome (P for interaction = 0.932).
Conclusion
This study found that elevated AIP was independently and positively associated with the risk of MACEs among non-diabetic hypertensive older adults. The benefits of intensive BP control in managing cardiovascular events were consistent in different AIP subgroups.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference27 articles.
1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on E, prevention statistics C and stroke statistics S. heart disease and stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.
2. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58:886–99.
3. Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G. Total and high-density lipoprotein cholesterol and stroke risk. Stroke. 2012;43:1768–74.
4. Wang A, Dai L, Zhang N, Lin J, Chen G, Zuo Y, et al. Oxidized low-density lipoprotein (LDL) and LDL cholesterol are associated with outcomes of minor stroke and TIA. Atherosclerosis. 2020;297:74–80.
5. Huang YQ, Huang JY, Liu L, Chen CL, Yu YL, Tang ST, et al. Relationship between triglyceride levels and ischaemic stroke in elderly hypertensive patients. Postgrad Med J. 2020;96:128–33.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献