Combining albumin deficiency and acute exercise reduces hepatic lipid droplet size in mice

Author:

Zhang Yi,Szramowski Mirandia,Sun Shuhan,Henderson Gregory C.

Abstract

AbstractHepatic lipid droplets (LDs) are implicated in ectopic lipid accumulation. The core of LDs, triacylglycerol (TAG), is synthesized from the esterification of fatty acids to a glycerol-3-phosphate (G-3-P) backbone. Albumin transports plasma free fatty acids, and previously albumin knockout (Alb−/−) mice were shown to exhibit lower hepatic TAG levels than wildtype (WT). Exercise is a beneficial strategy to alter hepatic metabolism, but its impacts on reducing hepatic lipids are far from satisfactory. The aim of this study was to investigate the combined effect of albumin deficiency and acute exercise on hepatic LDs. Eight-week-old male Alb−/− and WT mice were divided into sedentary and exercise groups. Exercised mice performed a 30-min high-intensity exercise bout. Results showed that sedentary Alb−/− mice had smaller hepatic LDs (P < 0.0001), associated with mitochondria, while WT mice exhibited larger LDs, surrounded by glycogen granules. Following acute exercise, hepatic LDs in Alb−/− mice reduced by 40% in size, while in WT increased by 14% (P < 0.0001). The maintenance of WT hepatic LDs was associated with elevated G-3-P level (P < 0.05), potentially derived from glycogen (R = -0.32, %change in glycogen versus LD content, P < 0.05). The reduction in Alb−/− mice LDs after exercise was possibly due to their low glycogen level. In conclusion, Alb−/− mice exhibited an enhanced capacity for reducing hepatic LD size and content in response to exercise. These findings suggest that modulating albumin’s functions combined with exercise could be a potential strategy to reduce ectopic lipid deposition in the liver.

Funder

Ralph W. and Grace M. Showalter Research Trust

McKinley Educational Initiative

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3