Lipoproteins and metabolites in diagnosing and predicting Alzheimer’s disease using machine learning

Author:

Wang Fenglin,Wang Aimin,Huang Yiming,Gao Wenfeng,Xu Yaqi,Zhang Wenjing,Guo Guiya,Song Wangchen,Kong Yujia,Wang Qinghua,Wang Suzhen,Shi Fuyan

Abstract

Abstract Background Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that poses a substantial economic burden. The Random forest algorithm is effective in predicting AD; however, the key factors influencing AD onset remain unclear. This study aimed to analyze the key lipoprotein and metabolite factors influencing AD onset using machine-learning methods. It provides new insights for researchers and medical personnel to understand AD and provides a reference for the early diagnosis, treatment, and early prevention of AD. Methods A total of 603 participants, including controls and patients with AD with complete lipoprotein and metabolite data from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database between 2005 and 2016, were enrolled. Random forest, Lasso regression, and CatBoost algorithms were employed to rank and filter 213 lipoprotein and metabolite variables. Variables with consistently high importance rankings from any two methods were incorporated into the models. Finally, the variables selected from the three methods, with the participants’ age, sex, and marital status, were used to construct a random forest predictive model. Results Fourteen lipoprotein and metabolite variables were screened using the three methods, and 17 variables were included in the AD prediction model based on age, sex, and marital status of the participants. The optimal random forest modeling was constructed with “mtry” set to 3 and “ntree” set to 300. The model exhibited an accuracy of 71.01%, a sensitivity of 79.59%, a specificity of 65.28%, and an AUC (95%CI) of 0.724 (0.645–0.804). When Mean Decrease Accuracy and Gini were used to rank the proteins, age, phospholipids to total lipids ratio in intermediate-density lipoproteins (IDL_PL_PCT), and creatinine were among the top five variables. Conclusions Age, IDL_PL_PCT, and creatinine levels play crucial roles in AD onset. Regular monitoring of lipoproteins and their metabolites in older individuals is significant for early AD diagnosis and prevention.

Funder

the National Natural Science Foundation of China

Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities

Shandong Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3