Cholesterol mediates the effects of single and multiple environmental phenols in urine on obesity

Author:

Yu Ting,Zhang Yuqing,Yuan Jiali,Zhang Yue,Li Jing,Huang Zhenyao

Abstract

Abstract Background Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to mixed phenols on obesity are not well established. Methods Using data from adults in National Health and Nutrition Examination Survey, this study examined the individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these effects was analyzed through a parallel mediation model. Results The results demonstrated that solitary phenols except triclosan were inversely associated with obesity (P-value < 0.05). The WQS index was also negatively correlated with general obesity (β: 0.770, 95% CI: 0.644–0.919, P-value = 0.004) and abdominal obesity (β: 0.781, 95% CI: 0.658–0.928, P-value = 0.004). Consistently, the BKMR model demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with obesity. Conclusions Assessing the potential public health risks of mixed phenols helps to incorporate this information into practical health advice and guidance.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Natural Science Foundation for Colleges Universities in Jiangsu Province

Xuzhou Medical University Start-up Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3