Yam Gruel alone and in combination with metformin regulates hepatic lipid metabolism disorders in a diabetic rat model by activating the AMPK/ACC/CPT-1 pathway

Author:

Dai Yanling,Qiu Chen,Zhang Diandian,Li Mianli,Liu Weinan

Abstract

Abstract Background As independent and correctable risk factors, disturbances in lipid metabolism are significantly associated with type 2 diabetes mellitus (T2DM). This research investigated the mechanism underlying the lipid-regulating effects of Yam Gruel in diabetic rats. Methods First, rats in the control group were given a normal diet, and a diabetic rat model was established via the consumption of a diet that was rich in both fat and sugar for six weeks followed by the intraperitoneal injection of streptozotocin (STZ). After the model was established, the rats were divided into five distinct groups: the control group, model group, Yam Gruel (SYZ) group, metformin (MET) group, and combined group; each treatment was administered for six weeks. The fasting blood glucose (FBG), body and liver weights as well as liver index of the rats were determined. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartic acid transaminase (AST), alanine aminotransferase (ALT), and nonesterified fatty acid (NEFA) levels were measured. Oil Red O staining was used to assess hepatic steatosis. In addition, the levels of Phospho-acetyl-CoA carboxylase (p-ACC), acetyl coenzyme A carboxylase (ACC), AMP-activated protein kinase (AMPK), Phospho-AMPK (p-AMPK), carnitine palmitoyl transferase I (CPT-1), and Malonyl-CoA decarboxylase (MLYCD) in liver tissues were measured by real-time PCR (q-PCR) and western blotting. Results After 6 weeks of treatment, Yam Gruel alone or in combination with metformin significantly reduced FBG level, liver weight and index. The concentrations of lipid indices (TG, TC, NEFA, and LDL-C), the levels of liver function indices (ALT and AST) and the degree of hepatic steatosis was improved in diabetic rats that were treated with Yam Gruel with or without metformin. Furthermore, Yam Gruel increased the protein levels of p-ACC/ACC, p-AMPK/AMPK, MLYCD, and CPT-1, which was consistent with the observed changes in gene expression. Additionally, the combination of these two agents was significantly more effective in upregulating the expression of AMPK pathway-related genes and proteins. Conclusions These results demonstrated that Yam Gruel may be a potential diet therapy for improving lipid metabolism in T2DM patients and that it may exert its effects via AMPK/ACC/CPT-1 pathway activation. In some respects, the combination of Yam Gruel and metformin exerted more benefits effects than Yam Gruel alone.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

Reference54 articles.

1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International Diabetes Federation; 2021.

2. Magliano DJ, Islam RM, Barr ELM, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019;11(366):l5003.

3. Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin J Diabetes Mellitus. 2021;13(4):315–409.

4. Einarson TR, Acs A, Ludwig C, et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83.

5. American Diabetes Association. Economic costs of diabetes in the US in 2017. Diabetes Care. 2018;41:917.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3