Abstract
AbstractThis paper is dedicated to studying the following Kirchhoff-type problem: $$ \textstyle\begin{cases} -m ( \Vert \nabla u \Vert ^{2}_{L^{2}(\mathbb{R} ^{N})} )\Delta u+V(x)u=f(u), & x\in \mathbb{R} ^{N}; \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases} $$
{
−
m
(
∥
∇
u
∥
L
2
(
R
N
)
2
)
Δ
u
+
V
(
x
)
u
=
f
(
u
)
,
x
∈
R
N
;
u
∈
H
1
(
R
N
)
,
where $N=1,2$
N
=
1
,
2
, $m:[0,\infty )\rightarrow (0,\infty )$
m
:
[
0
,
∞
)
→
(
0
,
∞
)
is a continuous function, $V:\mathbb{R} ^{N}\rightarrow \mathbb{R} $
V
:
R
N
→
R
is differentiable, and $f\in \mathcal{C}(\mathbb{R} ,\mathbb{R} )$
f
∈
C
(
R
,
R
)
. We obtain the existence of a ground state solution of Nehari–Pohozaev type and the least energy solution under some assumptions on V, m, and f. Especially, the existence of nonlocal term $m(\|\nabla u\|^{2}_{L^{2}(\mathbb{R} ^{N})})$
m
(
∥
∇
u
∥
L
2
(
R
N
)
2
)
and the lack of Hardy’s inequality and Sobolev’s inequality in low dimension make the problem more complicated. To overcome the above-mentioned difficulties, some new energy inequalities and subtle analyses are introduced.
Funder
Hunan provincial Natural Science Foundation
Scientific Research Fund of Hunan Provincial Education Department
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference38 articles.
1. Alves, C.O., Corréa, F.J.S.A., Figueiredo, G.M.: On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2, 409–417 (2010)
2. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
3. Bernstein, S.: Sur une class d’źquations fonctionnelles aux dźrivźes partielles. Izv. Akad. Nauk SSSR, Ser. Mat. 4, 17–26 (1940)
4. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6, 701–730 (2001)
5. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献