Ground state solutions for Kirchhoff-type equations with general nonlinearity in low dimension

Author:

Chen JingORCID,Li Yiqing

Abstract

AbstractThis paper is dedicated to studying the following Kirchhoff-type problem: $$ \textstyle\begin{cases} -m ( \Vert \nabla u \Vert ^{2}_{L^{2}(\mathbb{R} ^{N})} )\Delta u+V(x)u=f(u), & x\in \mathbb{R} ^{N}; \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases} $$ { m ( u L 2 ( R N ) 2 ) Δ u + V ( x ) u = f ( u ) , x R N ; u H 1 ( R N ) , where $N=1,2$ N = 1 , 2 , $m:[0,\infty )\rightarrow (0,\infty )$ m : [ 0 , ) ( 0 , ) is a continuous function, $V:\mathbb{R} ^{N}\rightarrow \mathbb{R} $ V : R N R is differentiable, and $f\in \mathcal{C}(\mathbb{R} ,\mathbb{R} )$ f C ( R , R ) . We obtain the existence of a ground state solution of Nehari–Pohozaev type and the least energy solution under some assumptions on V, m, and f. Especially, the existence of nonlocal term $m(\|\nabla u\|^{2}_{L^{2}(\mathbb{R} ^{N})})$ m ( u L 2 ( R N ) 2 ) and the lack of Hardy’s inequality and Sobolev’s inequality in low dimension make the problem more complicated. To overcome the above-mentioned difficulties, some new energy inequalities and subtle analyses are introduced.

Funder

Hunan provincial Natural Science Foundation

Scientific Research Fund of Hunan Provincial Education Department

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory,Analysis

Reference38 articles.

1. Alves, C.O., Corréa, F.J.S.A., Figueiredo, G.M.: On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2, 409–417 (2010)

2. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

3. Bernstein, S.: Sur une class d’źquations fonctionnelles aux dźrivźes partielles. Izv. Akad. Nauk SSSR, Ser. Mat. 4, 17–26 (1940)

4. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6, 701–730 (2001)

5. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence and concentration of ground state solutions for Kirchhoff type equations with general nonlinearities;Mathematical Methods in the Applied Sciences;2022-03-04

2. Bound state solutions for Kirchhoff type equations in dimension two;Journal of Mathematical Analysis and Applications;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3