Abstract
AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$
{
−
Δ
u
+
V
(
x
)
u
=
(
I
α
∗
|
u
|
α
N
+
1
)
|
u
|
α
N
−
1
u
+
λ
|
u
|
p
−
2
u
,
x
∈
R
N
;
u
∈
H
1
(
R
N
)
,
where $\lambda >0$
λ
>
0
is a parameter, $\alpha \in (0,N)$
α
∈
(
0
,
N
)
, $N\ge 3$
N
≥
3
, $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$
I
α
:
R
N
→
R
is the Riesz potential. As usual, $\alpha /N+1$
α
/
N
+
1
is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$
λ
>
λ
∗
for some given number $\lambda _{*}$
λ
∗
in three cases: (i) $2< p<\frac{4}{N}+2$
2
<
p
<
4
N
+
2
, (ii) $p=\frac{4}{N}+2$
p
=
4
N
+
2
, and (iii) $\frac{4}{N}+2< p<2^{*}$
4
N
+
2
<
p
<
2
∗
. Our result improves the previous related ones in the literature.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference32 articles.
1. Lieb, E.H., Loss, M.: Analysis Graduate Studies in Mathematics. Am. Math. Soc., Providence (1997)
2. Pekar, S.: Untersuchungöber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)
3. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)
4. Bahrami, M., Großardt, A., Donadi, S., Bassi, A.: The Schrödinger–Newton equation and its foundations. New J. Phys. 16, 115007 (2014)
5. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. A 140, 973–1009 (2010)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献