Abstract
AbstractIn this paper, we are concerned with the eigenvalue gap and eigenvalue ratio of the Dirichlet conformable fractional Sturm–Liouville problems. We show that this kind of differential equation satisfies the Sturm–Liouville property by the Prüfer substitution. That is, the nth eigenfunction has $n-1$
n
−
1
zero in $( 0,\pi ) $
(
0
,
π
)
for $n\in \mathbb{N}$
n
∈
N
. Then, using the homotopy argument, we find the minimum of the first eigenvalue gap under the class of single-well potential functions and the first eigenvalue ratio under the class of single-barrier density functions. The result of the eigenvalue gap is different from the classical Sturm–Liouville problem.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference21 articles.
1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
2. Adalar, İ., Sinan Ozkan, A.: Inverse problems for a conformable fractional Sturm–Liouville operator. J. Inverse Ill-Posed Probl. 28(6), 775–782 (2020). https://doi.org/10.1515/jiip-2019-0058
3. Al-Refai, M., Abdeljawad, T.: Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity 2017, Article ID 3720471 (2017). https://doi.org/10.1155/2017/3720471
4. Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56(6), 063502 (2015)
5. Ashbaugh, M.S., Benguria, R.: Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc. Am. Math. Soc. 105, 419–424 (1989)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献