Abstract
AbstractIn this paper, we consider the following singular third-order two-point boundary value problem on the half-line of the form $$ \textstyle\begin{cases} x'''+\phi (t)f(t,x,x',x'')=0, \quad 0< t< +\infty , \\ x(0)=0, \qquad x'(0)=a_{1},\qquad x'(+\infty )=b_{1}, \end{cases} $$
{
x
‴
+
ϕ
(
t
)
f
(
t
,
x
,
x
′
,
x
″
)
=
0
,
0
<
t
<
+
∞
,
x
(
0
)
=
0
,
x
′
(
0
)
=
a
1
,
x
′
(
+
∞
)
=
b
1
,
where $\phi \in C[0,+\infty )$
ϕ
∈
C
[
0
,
+
∞
)
, $f\in C([0,+\infty )\times (0,+\infty )\times \mathbb{R}^{{2}},\mathbb{R})$
f
∈
C
(
[
0
,
+
∞
)
×
(
0
,
+
∞
)
×
R
2
,
R
)
may be singular at $x=0$
x
=
0
, and $a_{1}$
a
1
, $b_{1}$
b
1
are positive constants. Using the Leray–Schauder nonlinear alternative and the diagonalization method together with the truncation function technique, we obtain the existence and qualitative properties of positive solutions for the problem. As applications, an example is given to illustrate our result.
Funder
the Natural Science Foundation of Jilin Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference22 articles.
1. Agarwal, R.P., Cetin, E.: Unbounded solutions of third order three-point boundary value problems on a half-line. Adv. Nonlinear Anal. 5, 105–119 (2016)
2. Agarwal, R.P., O’Regan, D.: Infinite interval problems modelling the flow of a gas through a semi-infinite porous medium. Stud. Appl. Math. 108, 245–257 (2002)
3. Bai, C., Li, C.: Unbounded upper and lower solution method for third-order boundary value problems on the half-line. Electron. J. Differ. Equ. 2009, 119 (2009)
4. Belhachmi, Z., Brighi, B., Taous, K.: On a family of differential equations for boundary layer approximations in porous media. Eur. J. Appl. Math. 12, 513–528 (2001)
5. Benbaaziz, Z., Djebali, S.: On a singular multi-point third-order boundary value problem on the half-line. Math. Bohem. 145, 305–324 (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献