Author:
Shah Kamal,Abdeljawad Thabet,Abdalla Bahaaeldin,Hleili Manel
Abstract
AbstractThis work is devoted to using topological degree theory to establish a mathematical analysis for a class of fractional-order evolution hybrid differential equations using a modified Mittag–Leffler-type derivative. In addition, two kinds of Ulam–Hyers (U–H) stability results are deduced for the mentioned problem. A pertinent example is given to verify the results.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)
2. Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939–945 (2010)
3. Richard, L.M.: Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)
4. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)
5. Richard, L.M.: Fractional Calculus in Bioengineering, vol. 2. Begell House, Redding (2006)