Author:
Chung Soon-Yeong,Hwang Jaeho
Abstract
AbstractThe purpose of this paper is to give a necessary and sufficient condition for the existence and non-existence of global solutions of the following semilinear parabolic equations $$ u_{t}=\Delta u+\psi (t)f(u),\quad \text{in }\Omega \times (0,\infty ), $$
u
t
=
Δ
u
+
ψ
(
t
)
f
(
u
)
,
in
Ω
×
(
0
,
∞
)
,
under the mixed boundary condition on a bounded domain Ω. In fact, this has remained an open problem for a few decades, even for the case $f(u)=u^{p}$
f
(
u
)
=
u
p
. As a matter of fact, we prove: $$ \begin{aligned} & \text{there is no global solution for any initial data if and only if } \\ & \int _{0}^{\infty}\psi (t) \frac{f (\lVert S(t)u_{0}\rVert _{\infty} )}{\lVert S(t)u_{0}\rVert _{\infty}}\,dt= \infty \\ &\text{for every nonnegative nontrivial initial data } u_{0}\in C_{0}( \Omega ). \end{aligned} $$
there is no global solution for any initial data if and only if
∫
0
∞
ψ
(
t
)
f
(
∥
S
(
t
)
u
0
∥
∞
)
∥
S
(
t
)
u
0
∥
∞
d
t
=
∞
for every nonnegative nontrivial initial data
u
0
∈
C
0
(
Ω
)
.
Here, $(S(t))_{t\geq 0}$
(
S
(
t
)
)
t
≥
0
is the heat semigroup with the mixed boundary condition.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Fujita, H.: On the blowing up of solutions of the Cauchy problems for $u_{t}=\delta u+u^{1+\alpha}$. J. Fac. Sci., Univ. Tokyo, Sect. 1 13, 109–124 (1966)
2. Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Jpn. Acad. 49, 503–505 (1973)
3. Kobayashi, K., Siaro, T., Tanaka, H.: On the blow-up problem for semilinear heat equations. J. Math. Soc. Jpn. 29, 407–424 (1977)
4. Deng, K., Levine, H.A.: The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl. 243, 85–126 (2000)
5. Levine, H.A.: The role of critical exponents in blowup theorems. SIAM Rev. 32(2), 262–288 (1990)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献