Abstract
AbstractThe time periodic Navier–Stokes equations are considered in the three-dimensional and two-dimensional settings with Dirichlet boundary conditions in thin tube structures. These structures are finite union of thin cylinders (thin rectangles in the case of dimension two), where the small parameter ε is the ratio of the hight and the diameter of the cylinders. We consider the case of finite or big coefficient before the time derivative. This setting is motivated by hemodynamical applications. Theorems of existence and uniqueness of a solution are proved. Complete asymptotic expansion of a solution is constructed and justified by estimates of the difference of the exact solution and truncated series of the expansion in norms taking into account the first and second derivatives with respect to the space variables and the first derivative in time. The method of asymptotic partial decomposition of the domain is justified for the time periodic problem.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献