Author:
Hong Mingli,Zhou Feng,Sun Chunyou
Abstract
AbstractWe consider dynamics of a semilinear heat equation on time-varying domains with lower regular forcing term. Instead of requiring the forcing term $f(\cdot )$
f
(
⋅
)
to satisfy $\int _{-\infty}^{t}e^{\lambda s}\|f(s)\|^{2}_{L^{2}}\,ds<\infty $
∫
−
∞
t
e
λ
s
∥
f
(
s
)
∥
L
2
2
d
s
<
∞
for all $t\in \mathbb{R}$
t
∈
R
, we show that the solutions of a semilinear heat equation on time-varying domains are continuous with respect to initial data in $H^{1}$
H
1
topology and the usual $(L^{2},L^{2})$
(
L
2
,
L
2
)
pullback $\mathscr{D}_{\lambda}$
D
λ
-attractor indeed can attract in the $H^{1}$
H
1
-norm, provided that $\int _{-\infty}^{t}e^{\lambda s}\|f(s)\|^{2}_{H^{-1}(\mathcal{O}_{s})}\,ds< \infty $
∫
−
∞
t
e
λ
s
∥
f
(
s
)
∥
H
−
1
(
O
s
)
2
d
s
<
∞
and $f\in L^{2}_{\mathrm{loc}}(\mathbb{R},L^{2}(\mathcal{O}_{s}))$
f
∈
L
loc
2
(
R
,
L
2
(
O
s
)
)
.
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)
2. Cao, D., Sun, C., Yang, M.: Dynamics for a stochastic reaction–diffusion equation with additive noise. J. Differ. Equ. 259, 838–872 (2015)
3. Cui, H., Kloeden, P.E., Zhao, W.: Strong $(L^{2},L^{\gamma}\cap H_{0}^{1})$-continuity in initial data of nonlinear reaction–diffusion equation in any space dimension. Electron. Res. Arch. 28, 1357–1374 (2020)
4. Duvaut, G.: Mécanique des Milieux Continus. Masson, Paris (1990)
5. Kloeden, P., Real, J., Sun, C.: Pullback attractors for a semilinear heat equation on time-varying domains. J. Differ. Equ. 246, 4702–4730 (2009)