Infinitely many solutions for three quasilinear Laplacian systems on weighted graphs

Author:

Pang Yan,Xie Junping,Zhang Xingyong

Abstract

AbstractWe investigate a generalized poly-Laplacian system with a parameter on weighted finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet boundary value on weighted locally finite graphs, and a $(p,q)$ ( p , q ) -Laplacian system with a parameter on weighted locally finite graphs. We utilize a critical points theorem built by Bonanno and Bisci [Bonanno, Bisci, and Regan, Math. Comput. Model. 52(1-2):152–160, 2010], which is an abstract critical points theorem without compactness condition, to obtain that these systems have infinitely many nontrivial solutions with unbounded norm when the parameters locate some well-determined range.

Funder

Yunnan Fundamental Research Projects of China

Xingdian Talent Support Program for Young Talents of Yunnan Province of China

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Alkama, S., Desquesnes, X., Elmoataz, A.: Infinity Laplacian on graphs with gradient term for image and data clustering. Pattern Recognit. Lett. 41, 65–72 (2014)

2. Arnaboldi, V., Passarella, A., Conti, M., Dunbar, R.: Online Social Networks: Human Cognitive Constraints in Facebook and Twitter Personal Graphs. Elsevier, Amsterdam (2015)

3. Bini, A.A., Bhat, M.S.: A fourth-order partial differential equation model for multiplicative noise removal in images//2013 international conference on emerging trends in communication. In: Control, Signal Processing and Computing Applications (C2SPCA), pp. 1–5. IEEE, Los Alamitos (2013)

4. Bonanno, G., Bisci, G.M.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, Article ID 670675 (2009)

5. Bonanno, G., Bisci, G.M., O’Regan, D.: Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Model. 52(1–2), 152–160 (2010)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3