Author:
Guo Yuting,Sun Rui,Wang Weiwei
Abstract
AbstractRecently, Hattori–Lagha established the global existence and asymptotic behavior of the solutions for a three-dimensional compressible chemotaxis system with chemoattractant and repellent (Hattori and Lagha in Discrete Contin. Dyn. Syst. 41(11):5141–5164, 2021). Motivated by Hattori–Lagha’s work, we further investigated the optimal time-decay rates of strong solutions with small perturbation to the three-dimensional Keller–Segel system coupled to the compressible Navier–Stokes equations, which models for the motion of swimming bacteria in a compressible viscous fluid. First, we reformulate the system into a perturbation form. Then we establish a prior estimates of solutions and prove the existence of the global-in-time solutions based on the local existence of unique solutions. Finally, we will establish the optimal time-decay rates of the nonhomogeneous system by the decomposition technique of both low and high frequencies of solutions as in (Wang and Wen in Sci. China Math., 2020, 10.1007/s11425-020-1779-7). Moreover, the decay rate is optimal since it agrees with the solutions of the linearized system.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献