Abstract
AbstractThis paper is devoted to studying the following nonlinear fractional problem: $$ \textstyle\begin{cases} (-\Delta )^{s}u+u=K( \vert x \vert )u^{p},\quad u>0, x\in {\mathbb{R}}^{N}, \\ u(x)\in H^{s}({\mathbb{R}}^{N}), \end{cases} $$
{
(
−
Δ
)
s
u
+
u
=
K
(
|
x
|
)
u
p
,
u
>
0
,
x
∈
R
N
,
u
(
x
)
∈
H
s
(
R
N
)
,
where $N\geq 3$
N
≥
3
, $0< s<1$
0
<
s
<
1
, $1< p<\frac{N+2s}{N-2s}$
1
<
p
<
N
+
2
s
N
−
2
s
, $K(|x|)$
K
(
|
x
|
)
is a positive radical function. We constructed infinitely many non-radial solutions of the new type which have a more complex concentration structure for (0.1).
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference37 articles.
1. Ambrosio, V.: Multiplicity of solutions for fractional Schrödinger systems in $\mathbb{R}^{N}$. Complex Var. Elliptic Equ. 65, 856–885 (2020)
2. Ambrosio, V., Figueiredo, G.: Ground state solutions for a fractional Schrödinger equation with critical growth. Asymptot. Anal. 105, 159–191 (2017)
3. An, X., Duan, L., Peng, Y.: Semi-classical analysis for fractional Schrödinger equations with fast decaying potentials. Appl. Anal. https://doi.org/10.1080/00036811.2021.1880571
4. Ao, W., Chan, H., González, M., Wei, J.: Bound state solutions for the supercritical fractional Schrödinger equation. Nonlinear Anal. 193, 111448 (2020)
5. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical nonlinearity. arXiv:2006.00239v2