Abstract
AbstractThis paper deals with the homogeneous Neumann boundary value problem for chemotaxis system $$\begin{aligned} \textstyle\begin{cases} u_{t} = \Delta u - \nabla \cdot (u\nabla v)+\kappa u-\mu u^{\alpha }, & x\in \Omega, t>0, \\ v_{t} = \Delta v - uv, & x\in \Omega, t>0, \end{cases}\displaystyle \end{aligned}$$
{
u
t
=
Δ
u
−
∇
⋅
(
u
∇
v
)
+
κ
u
−
μ
u
α
,
x
∈
Ω
,
t
>
0
,
v
t
=
Δ
v
−
u
v
,
x
∈
Ω
,
t
>
0
,
in a smooth bounded domain $\Omega \subset \mathbb{R}^{N}(N\geq 2)$
Ω
⊂
R
N
(
N
≥
2
)
, where $\alpha >1$
α
>
1
and $\kappa \in \mathbb{R},\mu >0$
κ
∈
R
,
μ
>
0
for suitably regular positive initial data.When $\alpha \ge 2$
α
≥
2
, it has been proved in the existing literature that, for any $\mu >0$
μ
>
0
, there exists a weak solution to this system. We shall concentrate on the weaker degradation case: $\alpha <2$
α
<
2
. It will be shown that when $N<6$
N
<
6
, any sublinear degradation is enough to guarantee the global existence of weak solutions. In the case of $N\geq 6$
N
≥
6
, global solvability can be proved whenever $\alpha >\frac{4}{3}$
α
>
4
3
. It is interesting to see that once the space dimension $N\ge 6$
N
≥
6
, the qualified value of α no longer changes with the increase of N.
Funder
the Applied Fundamental Research Plan of Sichuan Province
the Natural Science Fund of Sichuan Education Department
the Key Scientific Research Fund of Xihua University
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference36 articles.
1. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)
2. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj 40, 411–433 (1997)
3. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkc. Ekvacioj 44, 441–469 (2001)
4. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)
5. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献