Abstract
AbstractIn this article, we consider the existence of solutions to the Sturm–Liouville differential equation with random impulses and boundary value problems. We first study the Green function of the Sturm–Liouville differential equation with random impulses. Then, we get the equivalent integral equation of the random impulsive differential equation. Based on this integral equation, we use Dhage’s fixed point theorem to prove the existence of solutions to the equation, and the theorem is extended to the general second order nonlinear random impulsive differential equations. Then we use the upper and lower solution method to give a monotonic iterative sequence of the generalized random impulsive Sturm–Liouville differential equations and prove that it is convergent. Finally, we give two concrete examples to verify the correctness of the results.
Funder
Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献