Abstract
AbstractIn this paper, we consider the Cauchy problem for the sixth-order multidimensional generalized Boussinesq equation with double damping terms. By using the improved convexity method combined with Fourier transform, we show the finite time blow-up of solution with arbitrarily high initial energy.
Funder
NNSF of China
Natural Science Foundation of Shanxi Province of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference32 articles.
1. Boussinesq, J.: Théorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au foud. J. Math. Pures Appl. 217, 55–108 (1872)
2. Varlamov, V.: Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete Contin. Dyn. Syst. 7(4), 675–702 (2001)
3. Kiselev, A., Tan, C.: Finite time blow up in the hyperbolic Boussinesq system. Adv. Math. 325, 34–55 (2018)
4. Xu, R., Yang, Y., Liu, B., Shen, J., Huang, S.: Global existence and blowup of solutions for the multidimensional sixth order “good” Boussinesq equation. Z. Angew. Math. Phys. 66(3), 955–976 (2015)
5. Wang, S., Su, X.: Global existence and long-time behavior of the initial-boundary value problem for the dissipative Boussinesq equation. Nonlinear Anal., Real World Appl. 31, 552–568 (2016)