Author:
Khaleghi Ali,Razani Abdolrahman
Abstract
AbstractUsing variational methods and critical point results, we prove the existence and multiplicity of weak solutions of a $(p(x),q(x))$
(
p
(
x
)
,
q
(
x
)
)
-biharmonic elliptic equation along with a singular term under Navier boundary conditions.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference26 articles.
1. Allaoui, M., El Amrouss, A.R., Ourraoui, A.: Existence and multiplicity of solutions for a Steklov problem involving the $p(x)$-Laplace operator. Electron. J. Differ. Equ. 2012, 132, 1–12 (2012)
2. Behboudi, F., Razani, A.: Two weak solutions for a singular $(p, q)$-Laplacian problem. Filomat 33(11), 3399–3407 (2019)
3. Behboudi, F., Razani, A., Oveisiha, M.: Existence of a mountain pass solution for a nonlocal fractional $(p, q)$-Laplacian problem. Bound. Value Probl. 2020(1), 1 (2020). https://doi.org/10.1186/s13661-020-01446-w
4. Bisci, G.M., Repovš, D.: Multiple solutions of p-biharmonic equations with Navier boundary conditions. Complex Var. Elliptic Equ. 59(2), 271–284 (2014)
5. Bonanno, G.: A critical point theorem via the Ekeland variational principle. Nonlinear Anal. 75, 2992–3007 (2012)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献