Abstract
AbstractIn this paper, we study the local uniformly upper semicontinuity of pullback attractors for a strongly damped wave equation. In particular, under some proper assumptions, we prove that the pullback attractor $\{A_{\varepsilon }(t)\}_{t\in \mathbb{R}}$
{
A
ε
(
t
)
}
t
∈
R
of Eq. (1.1) with $\varepsilon \in [0,1]$
ε
∈
[
0
,
1
]
satisfies $\lim_{\varepsilon \to \varepsilon _{0}}\sup_{t\in [a,b]} \operatorname{dist}_{H_{0}^{1}\times L^{2}}(A_{\varepsilon }(t),A_{ \varepsilon _{0}}(t))=0$
lim
ε
→
ε
0
sup
t
∈
[
a
,
b
]
dist
H
0
1
×
L
2
(
A
ε
(
t
)
,
A
ε
0
(
t
)
)
=
0
for any $[a,b]\subset \mathbb{R}$
[
a
,
b
]
⊂
R
and $\varepsilon _{0}\in [0,1]$
ε
0
∈
[
0
,
1
]
.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献