Abstract
Abstract
The present paper deals with non-real eigenvalues of regular nonlocal indefinite Sturm–Liouville problems. The existence of non-real eigenvalues of indefinite Sturm–Liouville differential equation with nonlocal potential $K(x,t)$K(x,t) associated with self-adjoint boundary conditions is studied. Furthermore, a priori upper bounds of non-real eigenvalues for a class of indefinite differential equation involving nonlocal point interference potential function is obtained.
Funder
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference29 articles.
1. Albeverio, S., Hryniv, R.O., Nizhnik, L.P.: Inverse spectral problem for nonlocal Sturm–Liouville operators. Inverse Probl. 23, 523–535 (2007)
2. Albeverio, S., Nizhnik, L.: Schrödinger operators with nonlocal point interactions. J. Math. Anal. Appl. 332, 884–895 (2007)
3. Atkinson, F.V., Jabon, D.: Indefinite Sturm–Liouville problems. In: Kaper, H.G., Kwong, M.K., Zettle, A. (eds.) Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems, Vol. I, pp. 31–45. Argonne National Lab. (1988)
4. Behrndt, J., Chen, S., Philipp, F., Qi, J.: Estimates on the non-real eigenvalues of regular indefinite Sturm–Liouville problems. Proc. R. Soc. Edinb. A 144, 1113–1126 (2014)
5. Behrndt, J., Katatbeh, Q., Trunk, C.: Non-real eigenvalues of singular indefinite Sturm–Liouville operators. Proc. Am. Math. Soc. 137, 3797–3806 (2009)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献