Abstract
AbstractBy using variational methods we obtain infinitely many nontrivial solutions for a class of nonperiodic Schrödinger lattice systems, where the nonlinearities are sublinear at both zero and infinity.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference25 articles.
1. Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)
2. Chen, G., Ma, S.: Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities. Stud. Appl. Math. 131, 389–413 (2013)
3. Chen, G., Ma, S.: Perturbed Schrödinger lattice systems: existence of homoclinic solutions. Proc. R. Soc. Edinb. A 149(4), 1083–1096 (2019)
4. Chen, G., Ma, S., Wang, Z.-Q.: Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities. J. Differ. Equ. 261, 3493–3518 (2016)
5. Chen, G., Schechter, M.: Non-periodic discrete Schrödinger equations: ground state solutions. Z. Angew. Math. Phys. 67(3), 1–15 (2016)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献