Author:
Hajiaghasi Sakineh,Azami Shahroud
Abstract
AbstractIn this paper, we consider an n-dimensional manifold $M^{n}$
M
n
endowed with an almost Bakry–Émery Ricci curvature and study a special case of gradient estimate for the positive solutions of $\Delta u-X.u=f$
Δ
u
−
X
.
u
=
f
, for a smooth function f and a smooth vector field X under the almost Ricci solitons condition.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference18 articles.
1. Azami, S., Hajiaghasi, S.: New volume comparison with almost Ricci soliton. Commun. Korean Math. Soc. 37(3), 839–849 (2022)
2. Bailesteanu, M., Cao, X.D., Palematov, A.: Gradient estimates for the heat equation under the Ricci flow. J. Funct. Anal. 258, 3517–3542 (2010)
3. Bamler, R.H.: Entropy and heat kernel bounds on a Ricci flow background (2021). arXiv:2008.07093v3 [math.DG]
4. Calabi, E.: An extension of E. Hopf’s maximum principle with application to Riemannian geometry. Duke Math. J. 25, 45–46 (1957)
5. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. (2) 144(1), 189–237 (1996)