Abstract
AbstractIn this paper, we study the following Kirchhoff-type Schrödinger-Poisson systems in $\mathbb{R}^{2}$
R
2
: $$ \textstyle\begin{cases} - (a+b\int _{{\mathbb{R}}^{2}} \vert \nabla u \vert ^{2}\,\mathrm{d}x ) \Delta u+V(x)u+\mu \phi u=f(u),\quad x\in {\mathbb{R}}^{2}, \\ \Delta \phi =u^{2}, \quad x\in {\mathbb{R}}^{2}, \end{cases} $$
{
−
(
a
+
b
∫
R
2
|
∇
u
|
2
d
x
)
Δ
u
+
V
(
x
)
u
+
μ
ϕ
u
=
f
(
u
)
,
x
∈
R
2
,
Δ
ϕ
=
u
2
,
x
∈
R
2
,
where $a, b>0$
a
,
b
>
0
, $V\in \mathcal{C}({\mathbb{R}}^{2},{\mathbb{R}})$
V
∈
C
(
R
2
,
R
)
and $f\in \mathcal{C}({\mathbb{R}},{\mathbb{R}})$
f
∈
C
(
R
,
R
)
. By using variational methods combined with some inequality techniques, we obtain the existence of the least energy solution, the mountain pass solution, and the ground state solutions for the above systems under some general conditions for the nonlinearities. Our results extend and improve the main results in [Chen, Shi, Tang, Discrete Contin. Dyn. Syst. 39 (2019) 5867–5889].
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献