Abstract
AbstractIn this paper we study the following nonlinear Schrödinger system: $$ \textstyle\begin{cases} -\Delta u+\alpha u = \vert u \vert ^{p-1}u+\frac{2}{q+1} \lambda \vert u \vert ^{ \frac{p-3}{2}}u \vert v \vert ^{\frac{q+1}{2}},\quad x \in \mathbb{R}^{3}, \\ -\Delta v+\beta v = \vert v \vert ^{q-1}v+\frac{2}{p+1} \lambda \vert u \vert ^{ \frac{p+1}{2}} \vert v \vert ^{\frac{q-3}{2}}v ,\quad x \in \mathbb{R}^{3}, \\ u(x)\rightarrow 0,\qquad v(x)\rightarrow 0,\quad \text{as } \vert x \vert \rightarrow \infty , \end{cases} $$
{
−
Δ
u
+
α
u
=
|
u
|
p
−
1
u
+
2
q
+
1
λ
|
u
|
p
−
3
2
u
|
v
|
q
+
1
2
,
x
∈
R
3
,
−
Δ
v
+
β
v
=
|
v
|
q
−
1
v
+
2
p
+
1
λ
|
u
|
p
+
1
2
|
v
|
q
−
3
2
v
,
x
∈
R
3
,
u
(
x
)
→
0
,
v
(
x
)
→
0
,
as
|
x
|
→
∞
,
where $3\leq p, q<5$
3
≤
p
,
q
<
5
, α, β are positive parameters. We show that there exists $\lambda _{k}>0$
λ
k
>
0
such that the equation has at least k radially symmetric sign-changing solutions and at least k seminodal solutions for each $k\in \mathbb{N}$
k
∈
N
and $\lambda \in (0, \lambda _{k})$
λ
∈
(
0
,
λ
k
)
. Moreover, we show the existence of a least energy radially symmetric sign-changing solution for each $\lambda \in (0, \lambda _{0})$
λ
∈
(
0
,
λ
0
)
where $\lambda _{0}\in (0, \lambda _{1}]$
λ
0
∈
(
0
,
λ
1
]
.
Publisher
Springer Science and Business Media LLC