Abstract
AbstractWe are interested in the existence of solutions for the following fractional $p(x,\cdot )$
p
(
x
,
⋅
)
-Kirchhoff-type problem: $$ \textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases} $$
{
M
(
∫
Ω
×
Ω
|
u
(
x
)
−
u
(
y
)
|
p
(
x
,
y
)
p
(
x
,
y
)
|
x
−
y
|
N
+
p
(
x
,
y
)
s
d
x
d
y
)
(
−
Δ
)
p
(
x
,
⋅
)
s
u
=
f
(
x
,
u
)
,
x
∈
Ω
,
u
=
0
,
x
∈
∂
Ω
,
where $\Omega \subset \mathbb{R}^{N}$
Ω
⊂
R
N
, $N\geq 2$
N
≥
2
is a bounded smooth domain, $s\in (0,1)$
s
∈
(
0
,
1
)
, $p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$
p
:
Ω
‾
×
Ω
‾
→
(
1
,
∞
)
, $(-\Delta )^{s}_{p(x,\cdot )}$
(
−
Δ
)
p
(
x
,
⋅
)
s
denotes the $p(x,\cdot )$
p
(
x
,
⋅
)
-fractional Laplace operator, $M: [0,\infty ) \to [0, \infty )$
M
:
[
0
,
∞
)
→
[
0
,
∞
)
, and $f: \Omega \times \mathbb{R} \to \mathbb{R}$
f
:
Ω
×
R
→
R
are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo–Benci–Fortunato (Nonlinear Anal. 7(9):981–1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti–Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.
Funder
Natural Science Foundation of Jilin Province
National Foundation for Science and Technology Development
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献