Abstract
AbstractWe consider the following singular semilinear problem $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{in the distributional sense}), \\ u>0,\quad \text{in }D, \\ \lim_{ \vert x \vert \rightarrow 0} \vert x \vert ^{n-2}u(x)=0, \\ \lim_{ \vert x \vert \rightarrow \infty }u(x)=0,\end{cases} $$
{
Δ
u
(
x
)
+
p
(
x
)
u
γ
=
0
,
x
∈
D
(
in the distributional sense
)
,
u
>
0
,
in
D
,
lim
|
x
|
→
0
|
x
|
n
−
2
u
(
x
)
=
0
,
lim
|
x
|
→
∞
u
(
x
)
=
0
,
where $\gamma <1$
γ
<
1
, $D=\mathbb{R}^{n}\backslash \{0\}$
D
=
R
n
∖
{
0
}
($n\geq 3$
n
≥
3
) and p is a positive continuous function in D, which may be singular at $x=0$
x
=
0
. Under sufficient conditions for the weighted function $p(x)$
p
(
x
)
, we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.
Funder
Deanship of Scientific Research, King Saud University
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference28 articles.
1. Bachar, I., Mâagli, H., Rădulescu, V.D.: Singular solutions of a nonlinear elliptic equation in a punctured domain. Electron. J. Qual. Theory Differ. Equ. 2017, 94 (2017)
2. Encyclopedia Math. Appl.;N.H. Bingham,1989
3. Bliedtner, J., Hansen, W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)
4. Brezis, H., Kamin, S.: Sublinear elliptic equations in $\mathbb{R} ^{n}$. Manuscr. Math. 74, 87–106 (1992)
5. Chemmam, R., Dhifli, A., Mâagli, H.: Asymptotic behavior of ground state solutions for sub-linear and singular nonlinear Dirichlet problem. Electron. J. Differ. Equ. 2011, 88 (2011)