Effect of slip boundary conditions on unsteady pulsatile nanofluid flow through a sinusoidal channel: an analytical study

Author:

Dawood A. S.,Kroush Faisal A.,Abumandour Ramzy M.,Eldesoky Islam M.

Abstract

AbstractA novel analysis of the pulsatile nano-blood flow through a sinusoidal wavy channel, emphasizing the significance of diverse influences in the modelling, is investigated in this paper. This study examines the collective effects of slip boundary conditions, magnetic field, porosity, channel waviness, nanoparticle concentration, and heat source on nano-blood flow in a two-dimensional wavy channel. In contrast to prior research that assumed a constant pulsatile pressure gradient during channel waviness, this innovative study introduces a variable pressure gradient that significantly influences several associated parameters. The mathematical model characterising nano-blood flow in a horizontally wavy channel is solved using the perturbation technique. Analytical solutions for fundamental variables such as stream function, velocity, wall shear stress, pressure gradient, and temperature are visually depicted across different physical parameter values. The findings obtained for various parameter values in the given problem demonstrate a significant influence of the amplitude ratio parameter of channel waviness, Hartmann number of the magnetic field, permeability parameter of the porous medium, Knudsen number due to the slip boundary, volume fraction of nanoparticles, radiation parameter, Prandtl number, and heat source parameters on the flow dynamics. The simulations provide valuable insights into the decrease in velocity with increasing magnetic field and its increase with increasing permeability and slip parameters. Additionally, the temperature increases with increasing nanoparticle volume fraction and radiation parameter, while it decreases with increasing Prandtl number.

Funder

Science and Technology Development Fund

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3