Abstract
AbstractThis paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: $$ \textstyle\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast v^{p_{1}} )v^{p_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ (-\Delta )^{\frac{\alpha }{2}}v(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast u^{q_{1}} )u^{q_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ u(x)\geq 0,\quad\quad v(x)\geq 0, \quad x\in \mathbb{R}^{n}, \end{cases} $$
{
(
−
Δ
)
α
2
u
(
x
)
=
(
1
|
⋅
|
σ
∗
v
p
1
)
v
p
2
(
x
)
,
x
∈
R
n
,
(
−
Δ
)
α
2
v
(
x
)
=
(
1
|
⋅
|
σ
∗
u
q
1
)
u
q
2
(
x
)
,
x
∈
R
n
,
u
(
x
)
≥
0
,
v
(
x
)
≥
0
,
x
∈
R
n
,
where $0<\alpha \leq 2$
0
<
α
≤
2
, $n\geq 2$
n
≥
2
, $0<\sigma <n$
0
<
σ
<
n
, and $0< p_{1}, q_{1}\leq \frac{2n-\sigma }{n-\alpha }$
0
<
p
1
,
q
1
≤
2
n
−
σ
n
−
α
, $0< p_{2}, q_{2}\leq \frac{n+\alpha -\sigma }{n-\alpha }$
0
<
p
2
,
q
2
≤
n
+
α
−
σ
n
−
α
. Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution $(u,v)$
(
u
,
v
)
in the critical case and nonexistence of positive solutions in the subcritical cases.
Funder
Education Department of Jiangxi Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis