Abstract
AbstractThis paper is concerned with the following nonlocal fourth-order elliptic problem: $$\begin{aligned} \textstyle\begin{cases} \Delta ^{2}u-m(\int _{\varOmega } \vert \nabla u \vert ^{2} \,dx)\Delta u=a(x) \vert u \vert ^{s-2}u+f(x,u), \quad x\in \varOmega , \\ u=\Delta u=0,\quad x\in \partial \varOmega , \end{cases}\displaystyle \end{aligned}$$
{
Δ
2
u
−
m
(
∫
Ω
|
∇
u
|
2
d
x
)
Δ
u
=
a
(
x
)
|
u
|
s
−
2
u
+
f
(
x
,
u
)
,
x
∈
Ω
,
u
=
Δ
u
=
0
,
x
∈
∂
Ω
,
by using the mountain pass theorem, the least action principle, and the Ekeland variational principle, the existence and multiplicity results are obtained.
Funder
Fundamental Research Funds for the Central Universities
the National Natural Foundation of China-NSAF
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference20 articles.
1. Berger, M.: A new approach to the large detection of plate. J. Appl. Mech. 22, 465–472 (1955)
2. Afrouzi, G.A., Moradi, S., Caristi, G.: Infinitely many solutions for impulsive nonlocal elastic beam equations. Differ. Equ. Dyn. Syst. (2017). https://doi.org/10.1007/s12591-017-0397-z
3. Ansari, H., Vaezpour, S.M., Hesaaraki, M.: Existence of positive solution for nonlocal singular fourth order Kirchhoff equation with Hardy potential. Positivity 21, 1545–1562 (2017)
4. Cabada, A., Figueiredo, G.M.: A generalization of an extensible beam equation with critical growth in RN. Nonlinear Anal., Real World Appl. 20, 134–142 (2014)
5. Ferrara, M., Khademloo, S., Heidarkhani, S.: Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems. Appl. Math. Comput. 234, 316–325 (2014)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献