Abstract
AbstractWe know that interpolation spaces in terms of analytic semigroup have a significant role into the study of strict Hölder regularity of solutions of classical abstract Cauchy problem (ACP). In this paper, we first construct interpolation spaces in terms of solution operators in fractional calculus and characterize these spaces. Then we establish strict Hölder regularity of mild solutions of fractional order ACP.
Funder
Science and Engineering Research Board, New Delhi, INDIA
Ministry of Human Resource Development, India
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference21 articles.
1. Modern Birkhäuser Classics;A. Lunardi,1995
2. Sinestrari, E.: On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J. Math. Anal. Appl. 107(1), 16–66 (1985). https://doi.org/10.1016/0022-247X(85)90353-1
3. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000). https://doi.org/10.1016/S0370-1573(00)00070-3
4. Bazhlekova, E.: The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1(3), 255–270 (1998)
5. Wang, R.-N., Chen, D.-H., Xiao, T.-J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252(1), 202–235 (2012). https://doi.org/10.1016/j.jde.2011.08.048
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献