Abstract
AbstractA degenerate parabolic equation of the form $$\bigl( \vert v \vert ^{\beta-1}v\bigr)_{t}= \operatorname{div} \bigl(b(x,t) \vert \nabla v \vert ^{p(x,t)-2}\nabla v \bigr)+\nabla\vec{g}\cdot\nabla\vec{\gamma}(v) $$(|v|β−1v)t=div(b(x,t)|∇v|p(x,t)−2∇v)+∇g→⋅∇γ→(v) is considered, where $\vec{g}=\{g^{i}(x,t)\}$g→={gi(x,t)}, $\vec{\gamma}(v)=\{ \gamma_{i}(v)\}$γ→(v)={γi(v)}. If the diffusion coefficient $b(x,t)\geq0$b(x,t)≥0 is degenerate on the boundary, by adding some restrictions on $b(x,t)$b(x,t) and g⃗, the existence and uniqueness of weak solutions are proved. Based on the uniqueness, the stability of weak solutions can be proved without any boundary condition.
Funder
Natural Science Foundation of Fujian Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献