Abstract
AbstractIn this paper, we develop optimal Phragmén–Lindelöf methods, based on the use of maximum modulus of optimal value of a parameter in a Schrödinger functional, by applying the Phragmén–Lindelöf theorem for a second-order boundary value problems with respect to the Schrödinger operator. Using it, it is possible to find the existence of ground state solutions of the generalized Schrödinger equation with optimal control. In spite of the fact that the equation of this type can exhibit non-uniqueness of weak solutions, we prove that the corresponding Phragmén–Lindelöf method, under suitable assumptions on control conditions of the nonlinear term, is well-posed and admits a nonempty set of solutions.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference45 articles.
1. Afrouzi, G., Mirzapour, M., Rǎdulescu, V.D.: Variational analysis of anisotropic Schrödinger equations without Ambrosetti–Rabinowitz-type condition. Z. Angew. Math. Phys. 69, Article ID 9 (2018)
2. Aktosun, T., Papanicolaou, V.G.: Inverse problem with transmission eigenvalues for the discrete Schrödinger equation. J. Math. Phys. 56, Article ID 082101 (2005)
3. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
4. Azzollini, A.: The Kirchhoff equation in $\mathbb{R}^{3}$ perturbed by a local nonlinearity. Differ. Integral Equ. 25, 543–554 (2012)
5. Benbernou, S., Gala, S., Ragusa, M.A.: On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space. Math. Methods Appl. Sci. 37(15), 2320–2325 (2014)