Author:
Abdelwahed Mohamed,Chorfi Nejmeddine
Abstract
AbstractWe present a new procedure for the numerical study of the wave equation. We use the spectral discretization method associated with the Euler scheme for spatial and temporal discretization. A detailed numerical analysis leads to an a priori error estimate. We confirm the high precision of the method presented by a numerical study.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference15 articles.
1. Adjerid, S.: A posteriori finite element error estimation for second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 4699–4719 (2002)
2. Bangerth, W., Rannacher, R.: Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J. Numer. Math. 7, 263–282 (1999)
3. Bangerth, W., Rannacher, R.: Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9, 575–591 (2001)
4. Chaouil, A., Ellaggoune, F., Guezane-Lakoud, A.: Full discretization of wave equation. Bound. Value Probl. 2015, 133 (2015)
5. Pitman Res. Notes Math.;E. Süli,1996
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献