Abstract
AbstractExistence results for the three-point fractional boundary value problem
$$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B, are presented, where $A, B\in\mathbb{R}$A,B∈R, $0<\eta<1$0<η<1, $1<\alpha\leq2$1<α≤2. $D^{\alpha}x(t)$Dαx(t) is the conformable fractional derivative, and $f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$f:[0,1]×R2→R is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.
Funder
National Natural Science Foundation of China
Taishan Scholar Project of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference57 articles.
1. Abdelhakim, A., Machado, J.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063–3073 (2019). https://doi.org/10.1007/s11071-018-04741-5
2. Anderson, D., Camrud, E., Ulness, D.: On the nature of the conformable derivative and its applications to physics. J. Fract. Calc. Appl. 10(2), 92–135 (2019)
3. Bai, Z.: Solvability for a class of fractional m-point boundary value problem at resonance. Comput. Math. Appl. 62, 1292–1302 (2011)
4. Bai, Z., Chen, Y., Lian, H., Sun, S.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1175–1187 (2014)
5. Bai, Z., Du, Z., Zhang, S.: Iterative method for a class of fourth-order p-Laplacian beam equation. J. Appl. Anal. Comput. 9(4), 1443–1453 (2019)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献