Author:
Yang Jie,Chen Haibo,Liu Senli
Abstract
AbstractWe consider the following Schrödinger–Bopp–Podolsky problem:
$$ \textstyle\begin{cases} -\Delta u+V(x) u+\phi u=\lambda f(u)+ \vert u \vert ^{4}u,& \text{in } \mathbb{R}^{3}, \\ -\Delta \phi +\Delta ^{2}\phi = u^{2}, & \text{in } \mathbb{R}^{3}. \end{cases} $$
{
−
Δ
u
+
V
(
x
)
u
+
ϕ
u
=
λ
f
(
u
)
+
|
u
|
4
u
,
in
R
3
,
−
Δ
ϕ
+
Δ
2
ϕ
=
u
2
,
in
R
3
.
We prove the existence result without any growth and Ambrosetti–Rabinowitz conditions. In the proofs, we apply a cut-off function, the mountain pass theorem, and Moser iteration.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Research Foundation of Education Bureau of Hunan Province, China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference20 articles.
1. d’Avenia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: solutions in the electrostatic case. J. Differ. Equ. 267(2), 1025–1065 (2019)
2. Born, M.: Modified field equations with a finite radius of the electron. Nature 132, 282 (1933)
3. Born, M.: On the quantum theory of the electromagnetic field. Proc. R. Soc. Lond. Ser. A 143, 410–437 (1934)
4. Born, M., Infeld, L.: Foundations of the new field theory. Nature 132, 1004 (1933)
5. Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 144, 425–451 (1934)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献